Transmission Line Sizing Calculations



 Transmission Line Sizing Calculations  Parameters  

A. Power (P): 100 kW  

B. Voltage (V): 11 kV  

C. Power Factor: 0.9  

D. Length of Transmission Line (L): 10 km  

E. Resistance of Conductor (R): 0.05 ohms/km  

F. ConducÆŸvity of Material (σ): 58 x 10^6 Siemens/m (for copper)  G. Allowable Current Density: 1.2 A/mm²  

Single-Phase System  

1. Current Carrying Capacity (Ampacity)  

I = P / (V x Power Factor)  

P = 100 kW = 100,000 W  

V = 11 kV = 11,000 V  

Power Factor = 0.9  

I = 100,000 W / (11,000 V x 0.9)  

I = 100,000 W / 9,900  

I ≈ 10.1 A  

Why Calculate Current Carrying Capacity (Ampacity)?  

Calculating the current carrying capacity, or ampacity, is crucial to  ensure that the transmission line can handle the maximum  current without overheating or causing damage. It helps  determine the required conductor size and material. 

1  

2. Voltage Drop  

Voltage Drop = (L x I x R) / 1000  

L = 10 km  

I = 10.1 A  

R = 0.05 ohms/km  

Voltage Drop = (10 km x 10.1 A x 0.05 ohms/km) / 1000  Voltage Drop = (10 x 10.1 x 0.05) / 1000  

Voltage Drop = 0.505 V  

Why Calculate Voltage Drop?  

Calculating the voltage drop is essential to ensure that the  transmission line can deliver the required voltage to the load. A  high voltage drop can result in reduced power quality and  efficiency.  

3. Conductor Sizing  

A = I / (σ x Allowable Current Density)  

I = 10.1 A  

σ = 58 x 10^6 Siemens/m = 58,000 Siemens/mm²  

Allowable Current Density = 1.2 A/mm²  

A = 10.1 A / (58,000 Siemens/mm² x 1.2 A/mm²)  

A = 10.1 A / 69,600  

A ≈ 0.145 mm² 

2  

Why Calculate Conductor Sizing?  

Calculating the conductor sizing is necessary to determine the  required cross-sectional area of the conductor to carry the  maximum current without overheating or causing damage. 

Three-Phase System  

1. Current Carrying Capacity (Ampacity)  

I = P / (√3 x V x Power Factor)  

P = 100 kW = 100,000 W  

V = 11 kV = 11,000 V  

Power Factor = 0.9  

I = 100,000 W / (√3 x 11,000 V x 0.9)  

I = 100,000 W / 17,124.8  

I ≈ 5.87 A  

Why Calculate Current Carrying Capacity (Ampacity)?  

Calculating the current carrying capacity for a three-phase system  ensures that each phase can handle the maximum current  without overheating or causing damage. This is crucial for  maintaining power quality and efficiency in three-phase systems.  

2.Voltage Drop  

 Voltage Drop = (2 x L x I x R) / 1000  

L = 10 km  

I = 5.87 A  

R = 0.05 ohms/km 

3  

Voltage Drop = (2 x 10 km x 5.87 A x 0.05 ohms/km) / 1000  Voltage Drop = (2 x 10 x 5.87 x 0.05) / 1000  

Voltage Drop = 0.587 V  

Why Calculate Voltage Drop?  

Calculating the voltage drop in a three-phase system ensures that  the transmission line can deliver the required voltage to the load,  taking into account the increased current and resistance in three phase systems.  

3. Conductor Sizing  

A = I / (σ x Allowable Current Density)  

I = 5.87 A  

σ = 58 x 10^6 Siemens/m = 58,000 Siemens/mm²  

Allowable Current Density = 1.2 A/mm²  

A = 5.87 A / (58,000 Siemens/mm² x 1.2 A/mm²)  

A = 5.87 A / 69,600  

A ≈ 0.084 mm²  

Why Calculate Conductor Sizing?  

Calculating the conductor sizing for a three-phase system  determines the required cross-sectional area of each conductor to  carry the maximum current without overheating or causing  damage, ensuring reliable operation.


Post a Comment

0 Comments